Ομιλία του Κ. Κώστα Κουμάτου (University of Sussex), στο Σεμινάριο του Τομέα Μαθηματικών της ΣΕΜΦΕ, την Παρασκευή 05 Οκτωβρίου στις 13:35, στην Αίθουσα Σεμιναρίων του τομέα Μαθηματικών (2ος όροφος, κτίριο Ε).
Τίτλος : “
Quasiconvex elastodynamics: weak-strong uniqueness for dissipative measure-valued solutions”
Περίληψη : “A weak-strong uniqueness result is presented for a class of measure-valued solutions to the system of conservation laws arising in elastodynamics. The main novelty of this work is that the underlying stored-energy function is assumed strongly quasiconvex, a natural condition in elasticity, yet one not amenable to typical techniques in hyperbolic theory which are based on convexity. The proof borrows tools from the calculus of variations to prove a global Garding inequality for quasiconvex functions, and recasts them to adapt the relative entropy method to quasiconvex energies.”