Ομιλία του Κ. J. Auriol, (École Nationale Supérieure des Mines de Paris, http://cas.ensmp.fr/~auriol/), στο Σεμινάριο του Τομέα Μαθηματικών της ΣΕΜΦΕ, την Παρασκευή 1 Ιουνίου στις 12:35, στην Αίθουσα Σεμιναρίων του τομέα Μαθηματικών (2ος όροφος, κτίριο Ε).
Τίτλος : “Linear Hyperbolic PDEs are neutral systems”
Περίληψη : “In this talk, we focus on the equivalence between a general class of linear first order hyperbolic partial differential equations and neutral-differential equations with distributed delays. This equivalence is obtained using the backstepping approach as an analysis tool. Lyapunov-based methods for delay-differential equations can then be used to obtain new sufficient conditions for stability. In the second part of this talk, we use this equivalence to solve the problem of delay-robust stabilization for systems composed of two linear first order hyperbolic equations. More precisely, one must go back to the classical trade-off between convergence rate and delay-robustness: we prove that, for systems with strong reflections, canceling the reflection at the actuated boundary will yield zero delay-robustness. Finally, some extensions for the robust stabilization in presence of delays, uncertainties on the parameters and disturbances are proposed”