On a solution of the multidimensional truncated moment problem on the vertices of the hypercube

Christos P. Tantalakis

April 7, 2025

Abstract

Let d be an arbitrary positive integer, \mathbb{N}_0^d be the set of all d-tuples of non-negative integers, and for any $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_0^d$ let $|\alpha| = \alpha_1 + \cdots + \alpha_d$. If n is a non-negative integer and K a closed subset of \mathbb{R}^d , the truncated K-moment problem examines the existence of a non-negative measure μ , supported on K, such that, for a given (real valued) sequence $\{s_\alpha\}_{0 < |\alpha| < n}$,

$$s_{\alpha} = \int_{K} x^{\alpha} d\mu(x)$$
, for any $\alpha \in \mathbb{N}_{0}^{d}$ such that $|\alpha| \leq n$.

The talk deals with the case of K being the set of the vertices of the d-hypercube, i.e. $K_d = \{\pm 1\}^d$. The group structure of K_d and a simple linear optimisation argument prove to be powerful enough so that necessary and sufficient conditions for a solution are obtained when $n \ge d$, as well as sufficient conditions when n < d. Finally, a simple separation argument from functional analysis, combined with the previous results, yields a concrete description of the set of non-negative polynomials on K_d of degree at most n, for any $n \ge d$. The talk is based on a joint work with C. Emary and D. Kimsey.