NTUA Summer School, June 2018. Introduction to dispersive PDE.

Exercises

Problem 1. (a) Let ¢ € S(R) and z € C\{0} with a nonnegative real part. Then

7z\z|2A _ 1 7\2!22
/Re o(x)dx m/ﬂ@e o(x)dx.

(b) Assuming that g € S(R), express the solution of

U + Uz = 0,2 €R T ER, 1
{mm>gwemm> 1)

as a convolution of the tempered distribution \/41777561 5 with g.

(c) Similarly, prove that the solution of the linear Schrédinger equation on R™

iug + Au =0,z € R*, t € R, 9
{u@»ngesww @)

is given by

. 1 z—y|?
itA 7
e = — e 4t dy.
g (amit) s /Rn 9(y) dy

(d) Conclude that the following dispersive estimate holds

1

itA Lo
g”Lg"(R”) < (47T|t|)% ||g||L (R™)-

le
Problem 2. Consider the initial value problem

iug + Au = |u|P~u, x€R™ teR, pan oddinteger, (3)
u(z,0) = uo(x) € S(R™).

Show that smooth solutions of the above equation satisfy the following conser-
vation laws

lu()llz2 = lluollz2,
E(u)(t) = % / IVu(t)2de + Z% / ()P d = B(ug),

pt) = %/n u Vudz = p(0).



Problem 3. Duhamel’s principle. Let I be any time interval and suppose that
u € C}S(I x R™) and that F € C?S(I x R™). Then u solves

ug + Au = F, reR" teR, (@)
u(z,to) = u(to) € S(R™),

if and only if

t
u(z,t) = 102y (1) — z/ APz, 5)ds.
to
Problem 4. Fix n > 1. Consider the solution of

g+ Au=F,x € R" t € R, 5
{ u(0,) = g() € S(R™). (5)

Using Problem 3 we can express the solution as

w(w t) = Ut)g(z) —i /O Ut — $)F(x, s)ds,

where U(t)g is the linear evolution. We call a pair (g, r) of exponents admissible

if 2 < q,r < 0, %—i— % = % and (¢,m,n) # (2,00,2). Prove that for any

admissible exponents (g,r) and (¢,7) we have the following estimates: The
linear estimate

1U#)uollLarr ®xrny S lluollze, (6)

and the nonlinear estimate

I [ U= P slaga s £ 1 e ™)
Where%+%:1and%+%:l.
Problem 5 (Gronwall’s inequality) Assume that for a.e. ¢ € [0, 7], we have

ft) <A+ / o(r)f(7)dr

for some A > 0 and some nonnegative functions f and g such that fg €
LY([0,T7]). Prove that

f(t) < Aexp </0tg(7')d7> , te[0,T].

Problem 6. Recall Einstein’s summation convention for summing tensors. Let
Vi = a%k. If u is a smooth solution of (3) and p = |u|? and py = I(UVyu),
then the following local conservation laws are true:

Qup+ 2V, =0,



, . 1 p—1 .
k +1 _
where the symmetric tensor o, = 2R(V,uVu).
Notice that if we integrate the first quantity we obtain the conservation law

of mass while integration of the second quantity leads to momentum conserva-
tion.

Problem 7 a) Prove the Hardy-Littlewood-Sobolev inequality in all dimensions

I > Uyl Mra@n) < Cpgllflle@n
f0r0<’y<n,1<p<q<oo,and%:%—"n;7.
Hint: Review the basic properties of the maximal function

1

b) Derive Young’s inequality by the Riesz-Thorin interpolation theorem.
c) Prove the distributional identity for 0 < a < n,

(lzl=)(€) = canl€]*™
where ¢, is a constant depending only on « and n.

d) Use parts a), ¢) and duality to prove the Sobolev embedding
1 llr @y < CNIVIFllL2 @)
With%:%+%and2<p<oo.

e) Use part d) to prove the following Gagliardo-Nirenberg inequality on R™,
0

1_1_6
forg—2 o

lullze < ClIVulZolull ;27
Problem 8 a) Let f € C§°([a,b]) and ¢'(x) # 0 for any x € [a,b]. Then
b
I(\) = / M@ f(x)dr = O(A7F), as A = oo

for any k € Z*.



b) Let k € Z* and |¢*)(2)| > 1 for any = € [a,b] with ¢/(z) monotonic when
k =1. Then

b
‘/ ei)‘(z’(‘”)dx’ < ck/\7%
a
where the constant ¢ is independent of a and b.

¢) Van der Corput Lemma. Under the hypothesis of part b) prove that

b
| e el < axt (15l= + 1£10r):

Problem 9 Distributional solutions of NLS.
a) Show that e"®uy € CPL2(R x R™) if [Jugl|p2(rn) < o0.

b) Show that if ug € L?, then for any ¢ € C$°(R x R"™) we have

// L (6(a,1)) ¢ ug(x) dadt =0, (8)
RxR™

where L’ is the formal adjoint of the operator L = i9; + A. Thus we say that
e*A g satisfies (1) in the sense of distributions.

¢) Assume F € C§°(RxR™). Then we know that H(F)(z,t) = —i fot e t=)AF (2, 5)ds
is a C* funtion that satisfies (4) with zero initial data. First show that

IH(EF)(O)llz < 2 1Flpzz2 -
Then show that H(F) € CYL2(R x R™).

d) Use Strichartz estimates and prove that H(F) € CPL2(R x R") when F €
LI L for all (¢, r) Strichartz admissible exponents and (¢’, ') their Holder dual.

e) Now consider the solution to the L? sub-critical problem that we solved
in class. Thus assume that for ug € L2, u solves

¢
u(z,t) = !By, — z/ e =)B |y|PLy(s)ds
0
in CPL2 N LIL" with p < 1+ 2. Then show that u solves iu; + Au = |[u[P~lu
in the sense of distributions.

Problem 10. For n = 1 prove that

sup/ |DZ et qu9|? dt < CHUO”%Q(R).
— 00

x



Problem 11. For s > 0, prove that

sup [[n(t)e" %= g|| 21 < gl
T Ht
where n € C§°(R).

Problem 12 Prove that the number of divisors, d(NV), of an integer N is bounded
by C.N°€ for any ¢ > 0 by following the steps below:

(a) Prove that the number of divisors of N = p{*p52...p}* is equal to

k
Ha]—i—l

(b) Prove that “fal is bounded in a € N by a constant depending on ¢ for any
prime p.

(c) Prove that ‘;‘;1 is bounded by 1 if p¢ > e.

(d) Complete the proof by noting that the number of primes less than e/

contributing to the product dj(vji) is uniformly bounded in N.

Problem 13. Define the operators I'; = x; + 2it0,,, j = 1,...,n

i) Prove that for any multiindex «
ilz|? ) X
Mou(z,t) = e = (22758 Ve wu(x, t) = e Pre Ay (x, t).
ii) Prove that I'; commutes with 9; — iA.

iii) If up € L%(R") and x%uy € L?(R"), show that I'*u € C(R : L?*(R"))
and so

o (e e"2ug) € O\ {0} : I2(R™).)
iv) If up € H*(R"), s € Z* and z%uy € L?*(R"), |a| < s, then

u=e"ug € C(R H°N L2(|m|5dac)).

Problem 14 Prove that there do not exist p,q,t with 1 < ¢ < p < oo, t € R\ {0}
such that _
A LP(R™) — LY(R™) is continuous.

i) Prove that e'*® commutes with translations. That is if 7, f(z) = f(z — h)

then _ _
(e f(2)) = "By f ().



ii) Prove that if f € LP(R") then

. 1
m ||f + 7nflle@®e) =27 | fll Lo @n)-

|h|—o0
iii) Using ii) prove that || f[| Lagn) < C||f|Lrgny implies that
€74 £l ogeny < C25 0| £l Loen

which leads to a contradiction.

Problem 15 Assume p <1+ —%; forn >3 (1 <p<ooforn=1,2) anda >0
and b € R. If u € H'(R") satisfies

~Au+ au = blulP~tu € H™H(R")

then the following properties hold:

i) / |Vu|2da:—|—a/ |u|?dz = b \u|2+%da:.
n Rn R'n.

2b
ii) (Pohozaev’s identity) (n—2)/ |Vu|2dx—|—an/ lu|?dx = n4/ \u|2+%dx.
7 Jre

n 24

n

Now consider the energy functional E(u)(t) for the equation iu; + Au+ |[u|wu =
0. Show that E(Q) = 0, where @ is the ground state. Recall that @ is the
unique, symmetric, positive solution of the elliptic equation —Au + v = |u|%u
in R™.

Problem 16 For any b > 1 show that X*? embedds into C' (R : H*(R)).

Problem 17 a) For any b > 1/2 prove that

/ 1 du < 1
R (2)20\/[x — B] "~ (B)/?’

1 1
/R CS e Ry
b) For § € (0, 1], we have

/ dr < 1 .
R (T4 p1)P(T + p2) ~ (p1 — p2)P

Problem 18 Consider the initial value problem with periodic boundary condi-

tions
{ iU+ Ugp + [ulPlu=0, v€T, teR, ()
u(0,-) = g(-) € H*(T),



for s > 0. We know that solutions of (9) conserve the L?-norm. Prove that
if the local existence time § in H*, depends only on the L? norm of the initial
data, then the following global bound holds

lu(llzz+ < Ce“ M u(0)]| -

Problem 19 Use the algebra property of H*(T), s > % and Duhamel’s principle
to prove that (9) is locally wellposed in CYH.

Problem 20 Prove, using the Gagliardo—Nirenberg inequality, that the smooth
solutions of (9) satisfy

lull () < C = C(llgllm),
both in the focusing and defocusing cases.
Problem 21 For s > 1, prove that
el ull sy S MllF my lull 25 (-
Problem 22 Prove using the previous two exercises, and Gronwall’s inequality
prove that the smooth solutions of the cubic NLS equation (9) satisfy for s > 1
ull =ty < gl ers(mye€”

Conclude that (9) is globally wellposed on H*(T), s > 1.

Problem 23 a) Prove the following If 3 >~ > 0 and 8 + v > 1, then

2 (n— k1>ﬁl<n — ko) S (k1= ko) "7 9p(k1 — k)

where
Z 1 17 B > 17
pp(k) = g ~ 4 log(1+(k)), B=1,
iz 17 (k)18, B<1.

b) If 8 > 1/2, then
)PP —
— (n?2+cin+c)f ™

where the implicit constant is independent of ¢; and cs.

Problem 24 In this exercise we describe how one obtains the well-posedness of
the BBM equation

{ut—utm—kux—kuux:O, r eR, teR, (10)

uw(0,z) = g(z) € H*(R), s > 0.



(a) Show that the smooth solutions satisfy the conservation law

E(u(t)) := /Ruzdx—i—/Ruidx = E(g).

(b) Show that for any s > 0

H 1 _&ém ()

(c) Obtain local well-posedness in C) H for any s > 0 with the local existence
time depending on ||g|| g.

(d) Obtain global well-posedness in H®, s > 1. In fact, global well-posedness
holds in L? by a variation of the high-low decomposition method of Bourgain.
This result is optimal.

< lull--

‘HS

Problem 25 Consider the defocusing NLS

iug + Au = |ulP~lu
{u )

2,0) = up(z) € H*(R™)
for any 1 < p < 1—|—ﬁ, n>3(1<p<ooforn=12). If in addition
lzuo|| L2 < oo and

ue COR; H(R™))

solves (11), then we have: pr>1+%then for any2§r§% 2<r<ooif
n=12<r<ooifn=2)
1

(Ll
lu()llz- < CJt|~ =7

for all t € R™.

Problem 26 Consider the first Picard iteration for the KdV

t
e [ el oty (g
0

Show that on the Fourier side (ignoring zero modes) the term can be written as

$ §(k§)./gl;§f2) (e—dikikakt _ 1y
kitha=k DU
Show that this term is in H'(T) if g € L*(T).

Problem 27 Show that if

sup (/ / M2> < 00
& §1,62 /71,72



where

()T (&) (&) (- &1+ &)°
(T =)0 =) — &) (T — i+ 70— (£ =& +&2)2)°

then the following inequality is true

M(§17€27§77—177-27T) =

HulPullxsras-1my S lullen -

Problem 28 Consider the KdV equation in the form
Ut + Uy + Uppy = 0. (12)

A travelling wave solution is a function

u(z,t) = f(xz —ct)

that satisfies (12). The two basic features of any travelling wave are the un-
derlying profile shape defined by f and the speed |c| at which the profile is
translated along the z— axis. It is assumed that f is not constant and c is not
zero in order for u(z,t) to represent the movement of a disturbance through a
medium. Follow the steps below to obtain a travelling wave solution for the
KdV equation.

1. Substitute u(z,t) = f(xz — ct) into (12) to obtain a third order equation
(ODE) for f. Assume that f(z) satisfies f, f/, f” — 0 as z — oo.

2. Integrate once the equation you obtained in the previous step.
3. Multiply the resulting equation with f’ and integrate the result.

4. Set g2 = 3¢ — f, assuming 0 < f < 3¢ and integrate the new equation
which is a first order equation for g.

Your final answer should be
u(z,t) = 3¢ sech? [\éa(a: - ct)] .

The solution is a soliton. It is a pulse that travels at constant speed while
maintaining its shape.



