
NTUA Summer School, June 2018. Introduction to dispersive PDE.

Exercises

Problem 1. (a) Let φ ∈ S(R) and z ∈ C\{0} with a nonnegative real part. Then∫
R
e−z|x|

2

φ̂(x)dx =
1√
2z

∫
R
e−
|x|2
4z φ(x)dx.

(b) Assuming that g ∈ S(R), express the solution of{
iut + uxx = 0, x ∈ R, t ∈ R,
u(0, ·) = g(·) ∈ Hs(R)

(1)

as a convolution of the tempered distribution 1√
4πit

ei
|x|2
4t with g.

(c) Similarly, prove that the solution of the linear Schrödinger equation on Rn{
iut + ∆u = 0, x ∈ Rn, t ∈ R,
u(0, ·) = g(·) ∈ S(Rn)

(2)

is given by

eit∆g =
1

(4πit)
n
2

∫
Rn
ei
|x−y|2

4t g(y) dy.

(d) Conclude that the following dispersive estimate holds∥∥eit∆g∥∥
L∞x (Rn)

≤ 1

(4π|t|)n2
‖g‖L1(Rn).

Problem 2. Consider the initial value problem{
iut + ∆u = |u|p−1u, x ∈ Rn, t ∈ R, p an odd integer,

u(x, 0) = u0(x) ∈ S(Rn).
(3)

Show that smooth solutions of the above equation satisfy the following conser-
vation laws

‖u(t)‖L2
x

= ‖u0‖L2 ,

E(u)(t) =
1

2

∫
|∇u(t)|2dx+

1

p+ 1

∫
|u(t)|p+1dx = E(u0),

~p(t) = =
∫
Rn
u ∇udx = ~p(0).
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Problem 3. Duhamel’s principle. Let I be any time interval and suppose that
u ∈ C1

t S(I × Rn) and that F ∈ C0
t S(I × Rn). Then u solves{

iut + ∆u = F, x ∈ Rn, t ∈ R,
u(x, t0) = u(t0) ∈ S(Rn),

(4)

if and only if

u(x, t) = ei(t−t0)∆u(t0)− i
∫ t

t0

ei(t−s)∆F (x, s)ds.

Problem 4. Fix n ≥ 1. Consider the solution of{
iut + ∆u = F, x ∈ Rn, t ∈ R,
u(0, ·) = g(·) ∈ S(Rn).

(5)

Using Problem 3 we can express the solution as

u(x, t) = U(t)g(x)− i
∫ t

0

U(t− s)F (x, s)ds,

where U(t)g is the linear evolution. We call a pair (q, r) of exponents admissible
if 2 ≤ q, r ≤ ∞, 2

q + n
r = n

2 and (q, r, n) 6= (2,∞, 2). Prove that for any

admissible exponents (q, r) and (q̃, r̃) we have the following estimates: The
linear estimate

‖U(t)u0‖LqtLrx(R×Rn) . ‖u0‖L2 , (6)

and the nonlinear estimate

‖
∫ t

0

U(t− s)F (x, s)ds‖LqtLrx(R×Rn) . ‖F‖Lq̃′t Lr̃′x (R×Rn)
(7)

where 1
q̃ + 1

q̃′ = 1 and 1
r̃ + 1

r̃′ = 1.

Problem 5 (Gronwall’s inequality) Assume that for a.e. t ∈ [0, T ], we have

f(t) ≤ A+

∫ t

0

g(τ)f(τ)dτ

for some A ≥ 0 and some nonnegative functions f and g such that fg ∈
L1([0, T ]). Prove that

f(t) ≤ A exp

(∫ t

0

g(τ)dτ

)
, t ∈ [0, T ].

Problem 6. Recall Einstein’s summation convention for summing tensors. Let
∇k = ∂

∂xk
. If u is a smooth solution of (3) and ρ = |u|2 and pk = =(u∇ku),

then the following local conservation laws are true:

∂tρ+ 2∇jpj = 0,
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∂tp
j +∇k

(
δjk

(
− 1

2
∆ρ+

p− 1

p+ 1
|u|p+1

)
+ σjk

)
= 0

where the symmetric tensor σjk = 2<(∇ju∇ku).

Notice that if we integrate the first quantity we obtain the conservation law
of mass while integration of the second quantity leads to momentum conserva-
tion.

Problem 7 a) Prove the Hardy-Littlewood-Sobolev inequality in all dimensions

‖f ? (|y|−γ)‖Lq(Rn) ≤ Cp,q‖f‖Lp(Rn)

for 0 < γ < n, 1 < p < q <∞, and 1
q = 1

p −
n−γ
n .

Hint: Review the basic properties of the maximal function

M(f)(x) = sup
δ>0

1

|B(x, δ)|

∫
B(x,δ)

|f(y)|dy.

b) Derive Young’s inequality by the Riesz-Thorin interpolation theorem.

c) Prove the distributional identity for 0 < α < n,

̂(|x|−α)(ξ) = cα,n|ξ|α−n

where cα,n is a constant depending only on α and n.

d) Use parts a), c) and duality to prove the Sobolev embedding

‖f‖Lp(Rn) ≤ C‖|∇|sf‖L2(Rn)

with 1
2 = 1

p + s
n and 2 < p <∞.

e) Use part d) to prove the following Gagliardo-Nirenberg inequality on Rn,
for 1

p = 1
2 −

θ
n ,

‖u‖Lp ≤ C‖∇u‖θL2‖u‖1−θL2 .

Problem 8 a) Let f ∈ C∞0 ([a, b]) and φ′(x) 6= 0 for any x ∈ [a, b]. Then

I(λ) =

∫ b

a

eiλφ(x)f(x)dx = O(λ−k), as λ→∞

for any k ∈ Z+.
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b) Let k ∈ Z+ and |φ(k)(x)| ≥ 1 for any x ∈ [a, b] with φ′(x) monotonic when
k = 1. Then ∣∣∣ ∫ b

a

eiλφ(x)dx
∣∣∣ ≤ ckλ− 1

k

where the constant ck is independent of a and b.

c) Van der Corput Lemma. Under the hypothesis of part b) prove that∣∣∣ ∫ b

a

eiλφ(x)f(x)dx
∣∣∣ ≤ ckλ− 1

k

(
‖f‖L∞ + ‖f ′‖L1

)
.

Problem 9 Distributional solutions of NLS.

a) Show that eit∆u0 ∈ C0
t L

2
x(R× Rn) if ‖u0‖L2(Rn) <∞.

b) Show that if u0 ∈ L2, then for any φ ∈ C∞0 (R× Rn) we have∫ ∫
R×Rn

L′(φ(x, t)) eit∆u0(x) dxdt = 0, (8)

where L′ is the formal adjoint of the operator L = i∂t + ∆. Thus we say that
eit∆u0 satisfies (1) in the sense of distributions.

c) Assume F ∈ C∞0 (R×Rn). Then we know thatH(F )(x, t) = −i
∫ t

0
ei(t−s)∆F (x, s)ds

is a C∞ funtion that satisfies (4) with zero initial data. First show that

‖H(F )(t)‖L2
x
≤ |t| 12 ‖F‖L2

tL
2
x
.

Then show that H(F ) ∈ C0
t L

2
x(R× Rn).

d) Use Strichartz estimates and prove that H(F ) ∈ C0
t L

2
x(R × Rn) when F ∈

Lq
′

t L
r′

x for all (q, r) Strichartz admissible exponents and (q′, r′) their Hölder dual.

e) Now consider the solution to the L2 sub-critical problem that we solved
in class. Thus assume that for u0 ∈ L2, u solves

u(x, t) = ei(t)∆u0 − i
∫ t

0

ei(t−s)∆|u|p−1u(s)ds

in C0
t L

2
x ∩ L

q
tL

r
x with p < 1 + 4

n . Then show that u solves iut + ∆u = |u|p−1u
in the sense of distributions.

Problem 10. For n = 1 prove that

sup
x

∫ ∞
−∞
|D

1
2
x e

it∂xxu0|2 dt ≤ C‖u0‖2L2(R).
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Problem 11. For s ≥ 0, prove that

sup
x

∥∥η(t)eit∂xxg
∥∥
H

2s+1
4

t

. ‖g‖Hs ,

where η ∈ C∞0 (R).

Problem 12 Prove that the number of divisors, d(N), of an integer N is bounded
by CεN

ε for any ε > 0 by following the steps below:

(a) Prove that the number of divisors of N = pa11 pa22 . . . pakk is equal to

k∏
j=1

(aj + 1).

(b) Prove that a+1
pεa is bounded in a ∈ N by a constant depending on ε for any

prime p.

(c) Prove that a+1
pεa is bounded by 1 if pε > e.

(d) Complete the proof by noting that the number of primes less than e1/ε

contributing to the product d(N)
Nε is uniformly bounded in N .

Problem 13. Define the operators Γj = xj + 2it∂xj , j = 1, ..., n.

i) Prove that for any multiindex α

Γαu(x, t) = e
i|x|2
4t (2it∂x)αe−

i|x|2
4t u(x, t) = eit∆xαe−it∆u(x, t).

ii) Prove that Γj commutes with ∂t − i∆.

iii) If u0 ∈ L2(Rn) and xαu0 ∈ L2(Rn), show that Γαu ∈ C(R : L2(Rn))
and so

∂αx

(
e−

i|x|2
4t eit∆u0

)
∈ C(R \ {0} : L2(Rn).)

iv) If u0 ∈ Hs(Rn), s ∈ Z+ and xαu0 ∈ L2(Rn), |α| ≤ s, then

u = eit∆u0 ∈ C
(
R : Hs ∩ L2(|x|sdx)

)
.

Problem 14 Prove that there do not exist p, q, t with 1 ≤ q < p <∞, t ∈ R\{0}
such that

eit∆ : Lp(Rn) 7→ Lq(Rn) is continuous.

i) Prove that eit∆ commutes with translations. That is if τhf(x) = f(x − h)
then

τh(eit∆f(x)) = eit∆τhf(x).
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ii) Prove that if f ∈ Lp(Rn) then

lim
|h|→∞

‖f + τhf‖Lp(Rn) = 2
1
p ‖f‖Lp(Rn).

iii) Using ii) prove that ‖eit∆f‖Lq(Rn) ≤ C‖f‖Lp(Rn) implies that

‖eit∆f‖Lq(Rn) ≤ C2( 1
p−

1
q )‖f‖Lp(Rn)

which leads to a contradiction.

Problem 15 Assume p < 1 + 4
n−2 for n ≥ 3 (1 < p <∞ for n = 1, 2) and a > 0

and b ∈ R. If u ∈ H1(Rn) satisfies

−∆u+ au = b|u|p−1u ∈ H−1(Rn)

then the following properties hold:

i)

∫
Rn
|∇u|2dx+ a

∫
Rn
|u|2dx = b

∫
Rn
|u|2+ 4

n dx.

ii)(Pohozaev’s identity) (n−2)

∫
Rn
|∇u|2dx+an

∫
Rn
|u|2dx =

2bn

2 + 4
n

∫
Rn
|u|2+ 4

n dx.

Now consider the energy functional E(u)(t) for the equation iut+∆u+ |u| 4nu =
0. Show that E(Q) = 0, where Q is the ground state. Recall that Q is the

unique, symmetric, positive solution of the elliptic equation −∆u + u = |u| 4nu
in Rn.

Problem 16 For any b > 1
2 show that Xs,b embedds into C (R : Hs(R)).

Problem 17 a) For any b > 1/2 prove that∫
R

1

〈x〉2b
√
|x− β|

dx .
1

〈β〉1/2
,

∫
R

1

〈x− α〉2b〈x− β〉2b
dx .

1

〈α− β〉2b
.

b) For β ∈ (0, 1], we have∫
R

dτ

〈τ + ρ1〉β〈τ + ρ2〉
.

1

〈ρ1 − ρ2〉β−
.

Problem 18 Consider the initial value problem with periodic boundary condi-
tions {

iut + uxx ± |u|p−1u = 0, x ∈ T, t ∈ R,
u(0, ·) = g(·) ∈ Hs(T),

(9)
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for s ≥ 0. We know that solutions of (9) conserve the L2-norm. Prove that
if the local existence time δ in Hs, depends only on the L2 norm of the initial
data, then the following global bound holds

‖u(t)‖Hs ≤ CeC|t|‖u(0)‖Hs .

Problem 19 Use the algebra property of Hs(T), s > 1
2 and Duhamel’s principle

to prove that (9) is locally wellposed in C0
tH

s
x.

Problem 20 Prove, using the Gagliardo–Nirenberg inequality, that the smooth
solutions of (9) satisfy

‖u‖H1(T) ≤ C = C(‖g‖H1),

both in the focusing and defocusing cases.

Problem 21 For s ≥ 1, prove that

‖|u|2u‖Hs(T) . ‖u‖2H1(T)‖u‖Hs(T).

Problem 22 Prove using the previous two exercises, and Gronwall’s inequality
prove that the smooth solutions of the cubic NLS equation (9) satisfy for s ≥ 1

‖u‖Hs(T) ≤ ‖g‖Hs(T)e
Ct.

Conclude that (9) is globally wellposed on Hs(T), s ≥ 1.

Problem 23 a) Prove the following If β ≥ γ ≥ 0 and β + γ > 1, then∑
n

1

〈n− k1〉β〈n− k2〉γ
. 〈k1 − k2〉−γφβ(k1 − k2)

where

φβ(k) :=
∑
|n|≤|k|

1

|n|β
∼

 1, β > 1,
log(1 + 〈k〉), β = 1,
〈k〉1−β , β < 1.

b) If β > 1/2, then ∑
n

1

〈n2 + c1n+ c2〉β
. 1,

where the implicit constant is independent of c1 and c2.

Problem 24 In this exercise we describe how one obtains the well-posedness of
the BBM equation{

ut − utxx + ux + uux = 0, x ∈ R, t ∈ R,
u(0, x) = g(x) ∈ Hs(R), s ≥ 0.

(10)
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(a) Show that the smooth solutions satisfy the conservation law

E(u(t)) :=

∫
R
u2dx+

∫
R
u2
xdx = E(g).

(b) Show that for any s ≥ 0∥∥∥∥ ∂x
1− ∂xx

(
u2
)∥∥∥∥
Hs

. ‖u‖2Hs .

(c) Obtain local well-posedness in C0
tH

s
x for any s ≥ 0 with the local existence

time depending on ‖g‖Hs .
(d) Obtain global well-posedness in Hs, s ≥ 1. In fact, global well-posedness
holds in L2 by a variation of the high–low decomposition method of Bourgain.
This result is optimal.

Problem 25 Consider the defocusing NLS{
iut + ∆u = |u|p−1u

u(x, 0) = u0(x) ∈ H1(Rn)
(11)

for any 1 < p < 1 + 4
n−2 , n ≥ 3 (1 < p < ∞ for n = 1, 2). If in addition

‖xu0‖L2 <∞ and
u ∈ C0

t (R;H1(Rn))

solves (11), then we have: If p > 1 + 4
n then for any 2 ≤ r ≤ 2n

n−2 (2 ≤ r ≤ ∞ if
n = 1, 2 ≤ r <∞ if n = 2)

‖u(t)‖Lr ≤ C|t|−n( 1
2−

1
r )

for all t ∈ Rn.

Problem 26 Consider the first Picard iteration for the KdV

e−t∂
3
x

∫ t

0

et
′∂3
x
[
e−t

′∂3
xg∂x

(
e−t

′∂3
xg
)]
dt′.

Show that on the Fourier side (ignoring zero modes) the term can be written as∑
k1+k2=k

ĝ(k1)ĝ(k2)

−3ikk1
(e−3ik1k2kt − 1).

Show that this term is in H1(T) if g ∈ L2(T).

Problem 27 Show that if

sup
ξ,τ

(∫
ξ1,ξ2

∫
τ1,τ2

M2

)
<∞
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where

M(ξ1, ξ2, ξ, τ1, τ2, τ) =
〈ξ〉s+a〈ξ1〉−s〈ξ2〉−s〈ξ − ξ1 + ξ2〉−s

〈τ − ξ2〉1−b〈τ1 − ξ2
1〉b〈τ2 − ξ2

2〉b〈τ − τ1 + τ2 − (ξ − ξ1 + ξ2)2〉b

then the following inequality is true

‖|u|2u‖Xs+a,b−1(R) . ‖u‖3Xs,b(R).

Problem 28 Consider the KdV equation in the form

ut + uux + uxxx = 0. (12)

A travelling wave solution is a function

u(x, t) = f(x− ct)

that satisfies (12). The two basic features of any travelling wave are the un-
derlying profile shape defined by f and the speed |c| at which the profile is
translated along the x− axis. It is assumed that f is not constant and c is not
zero in order for u(x, t) to represent the movement of a disturbance through a
medium. Follow the steps below to obtain a travelling wave solution for the
KdV equation.

1. Substitute u(x, t) = f(x − ct) into (12) to obtain a third order equation
(ODE) for f . Assume that f(z) satisfies f, f ′, f ′′ → 0 as z →∞.

2. Integrate once the equation you obtained in the previous step.

3. Multiply the resulting equation with f ′ and integrate the result.

4. Set g2 = 3c − f , assuming 0 < f < 3c and integrate the new equation
which is a first order equation for g.

Your final answer should be

u(x, t) = 3c sech2

[√
c

2
(x− ct)

]
.

The solution is a soliton. It is a pulse that travels at constant speed while
maintaining its shape.
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